The nonlinear growth of surface-tension-driven instabilities of a thin annular film
نویسندگان
چکیده
The stability and initial growth rate of disturbances on an annular film lining a cylindrical tube have been the focus of several previous works. The further development of these disturbances as they grow to form stable unduloids or liquid bridges is investigated by means of a thin-film integral model. The model is compared both with perturbation theories for early times, and a numerical solution of the exact equations (NEKTON) for later times. The thin-film model gave results that were in good agreement with solutions of the exact equations. The results show that linear perturbation theory can be used to give good estimates of the times for unduloid and liquid bridge formation. The success of the model derives from the dominant influence of narrow draining regions that feed into the growing unduloid, and these regions remain essentially one-dimensional throughout the growth of the instability. The model is used to analyse the evolution of the liquid layer lining the small airways of the lung during a single breath. The timescales for formation of unduloids and liquid bridges are found to be short enough for the liquid layer to be in a virtually quasi-equilibrium state throughout the breathing cycle. This conclusion is only tentative, however, because the model assumes that the surface tension of the airway liquid lining does not change with changes in interfacial area despite the known presence of pulmonary surfactant.
منابع مشابه
Instabilities of Thin Viscous Liquid Film Flowing down a Uniformly Heated Inclined Plane
Instabilities of a thin viscous film flowing down a uniformly heated plane are investigated in this study. The heating generates a surface tension gradient that induces thermocapillary stresses on the free surface. Thus, the film is not only influenced by gravity and mean surface tension but also the thermocapillary force is acting on the free surface. Moreover, the heat transfer at the free su...
متن کاملThree-dimensional instabilities of liquid-lined elastic tubes: A thin-film fluid-structure interaction model
We develop a theoretical model of surface-tension-driven, three-dimensional instabilities of liquid-lined elastic tubes—a model for pulmonary airway closure. The model is based on large-displacement shell theory, coupled to the equations of lubrication theory, modified to ensure the exact representation of the system’s equilibrium configurations. The liquid film that lines the initially uniform...
متن کاملIrreversibility Analysis of MHD Buoyancy-Driven Variable Viscosity Liquid Film along an Inclined Heated Plate Convective Cooling
Analysis of intrinsic irreversibility and heat transfer in a buoyancy-driven changeable viscosity liquid along an incline heated wall with convective cooling taking into consideration the heated isothermal and isoflux wall is investigated. By Newton’s law of cooling, we assumed the free surface exchange heat with environment and fluid viscosity is exponentially dependent on temperature. Appropr...
متن کاملNumerical Methods for Fourth Order Nonlinear Degenerate Diffusion Problems
Numerical schemes are presented for a class of fourth order diffusion problems. These problems arise in lubrication theory for thin films of viscous fluids on surfaces. The equations being in general fourth order degenerate parabolic, additional singular terms of second order may occur to model effects of gravity, molecular interactions or thermocapillarity. Furthermore, we incorporate nonlinea...
متن کاملرشد لایههای نازک ابررساناهای مسی دمای بالا
This paper reviews briefly the development of physical vapour deposition based HTS thin film preparation technologies to today’s state-of-the-art methods. It covers the main trends of in-situ process and growth control. The current activities to fabricate tapes for power applications as well as to tailor interfaces in cuprate are described. Some future trends in HTS thin film research, both f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005